

Connecticut Science and Engineering Fair 2022 Fair Report

The CSEF was held as a virtual fair on March 7th-March 16th, 2022

Table of Contents

Fair Summary	2
Awards	3-22
Links to Student Awards	3
Students Advancing to International Competitions	4-5
ISEF Student Awards and Abstracts	6-12
CSEF Members Accompanying ISEF Students	13
University Scholarships	14-15
Winning Projects for Life and Physical Science Categories	16
Winning Projects for Special Categories	17-19
Student and Project Statistics.	20-24
Historical Data on CSEF Fair Location and Project Information.	.25
Project category totals by year	.26
School and Town Statistics.	.27-29
Returning Students.	.30

Judges Participation and	Statistics	
--------------------------	------------	--

2022 CSEF Fair Summary

The 2022 fair was held virtually for the second year due to COVID-19 considerations. As a result, all student presentations were judged during consecutive video sessions by Zoom meetings over the course of 5 days. This format allowed for every student to present their projects during preliminary judging as well as during the finalist judging sessions. Although technically challenging, the process was a success with very few problems manifest during the fair or the awards sessions. 383 students participated in the fair with 306 projects presented. The students represented 90 different towns or cities. There were over 257 volunteer judges from both industry and academia who participated. The students were awarded over 175 awards worth over \$44,584 from 49 contributing sponsors. Sixteen students proceeded on to further national and international science competitions including seven who went on to the Regeneron International Science and Engineering Fair (ISEF) held in Atlanta, GA. These representatives received 5 Grand awards at the event. The success of the fair depends on CSEF leadership and volunteers and there are plans for it to go to a hybrid format with finalist judging being in-person at Quinnipiac University for 2023.

Links to Student Awards

Student Awards by Town:

https://ctsciencefair.org/media/2022CSFAllAwardWinnersLISTFINALV3.pdf

Student Awards by Fair Category:

https://ctsciencefair.org/media/2022RegFairWinners_Category.pdf

Student Special Awards by Granting Organization:

https://ctsciencefair.org/media/2022SponAwardsV3.pdf

Top Winners Advancing to International Competitions

Regeneron ISEF

CSEF Physical Sciences									
Removal of Microspheres Water Conta	minants, via Calcite-Infused, Coral-like Melamine	Sponges							
Naomi Park	Greenwich High School	Greenwich, CT							
Real-Time Motion Tracking System and	l Data Analytics for Live Insects Using Three-Whee	led Servosphere Robot							
Nicholas Lee	Hopkins School	New Haven, CT							
CSEF Life Sciences									
The use of Prime Editing to Induce and	Correct the CFTR-F508del mutation in iPSCs.								
Benjamin Persily	King School	Stamford, CT							
Development of Readily Accessible Machine Learning Diagnostics for Early Stage Mild TBI using Eye Tracking Methods									
Ashley Malkin	Greenwich High School	Greenwich, CT							
<u>Alexion Biotechnology</u>									
Development of a Home N-Terminal Pr	o-Brain Natriuretic Peptide Assay for the Diagnosi	s of Congestive Heart Failure							
Maya Chiravuri	Choate Rosemary Hall	Wallingford, CT							
<u>Urban School Challenge</u>									
Implementing Nontoxic Modified Magn Emerging Contaminants in an Aqueous	etic Metal Oxide Nanoparticle Enhanced Biochar F Solution	iltration for the Efficient Removal of							
Snigtha Mohanra	Engineering and Science Magnet	New Haven, CT							
<u>Engineering</u>									
Design of a Novel, Dual-Functioning Ti Treatment	ssue Plasminogen Activator and Anticoagulant The	rapeutic for Rapid Ischemic Stroke							
Ambika Grover	Greenwich High School	Greenwich, CT							

Genius Olympiad

A novel mitigation technique to control the spread of the invasive Spotted Lanternfly (L. Delicatula) through cardiac glycoside extracts

Cooper Carr	Bridgeport Aquaculture Center	Bridgeport, CT
The Palingenesis Project		
Ashley Ramos		
Bruno Valdivia		
Katelyn Zayas	Platt Technical High School	Milford, CT
Model System Design for Technolo	gy-Assisted Insulin Regulation	
Sydney Borst	Westside Middle School Academy	Danbury, CT
Quantifying the interspecific impo	acts of the native relationships of the Long Island Sou	nd
Sarah Davis	Bridgeport Aquaculture Center	Bridgeport, CT
Eco-Friendly Remediation of Polyc Crystal, Supramolecular Hydrogel	cyclic Aromatic Hydrocarbons in Stormwater via Magn Scaffolding	esium-Infused Calcite
Audrey Lin	Greenwich High School	Greenwich, CT
Piezoelectric Wind Harvesting Ele	ctrical Energy Conversion	
Dylan Pueschel		
John Watrous	Academy of Aerospace & Engineering	Windsor, CT

Regeneron ISEF Representatives

Removal of Microspheres Water Contaminants, via Calcite-Infused, Coral-like Melamine SpongesNaomi ParkGreenwich High SchoolGreenwich, CT

Awards: 2nd Place Grand Award in Environmental Engineering (\$2,000)

ISEF Abstract:

The detrimental threat microplastics (MPs) have on the environment is well-established. However, their effective and efficient remediation in aquatic environments has yet to be established. This research provides a highly efficient/practical method for the removal of MPs through the creation of an Artificial Coral Sponge (ACS). The ACS was constructed on a 2x2x1.5cm (150µm-pore) melamine sponge, with a PTFE adhesion layer, and CaCO3 for MPcapture. The cubic-shaped ACS removed ~176k-MPs (~93%) in 45 hours, from 0.1mg/ml MP-contaminated fresh or seawater. High MP-concentration, long-term experiments were conducted to examine full capacity of the cubic-ACS. Following 1 week of submersion in 0.5mg/ml MP-contaminated water, SEM analysis highlights MP retention throughout its internal structure, demonstrating that it is not a surface-only remediation device. At full capacity, the ACS can retain 2065k MPs per device. To evaluate ACS reuse properties, a single ACS was used, and reused twice more, in subsequent 0.1mg/ml MP-contaminated water samples. Marginal decline of MP-remediation over 3 "reuses" highlights the ability to reapply the ACS in contaminated water, until its MP-limit is reached. An investigation for optimal ACS shape was conducted. Ellipsoid and cubic shaped devices behaved similarly, further pointing to the internal nature of ACS MP-capture. Finally, prolonged stability studies demonstrate prolonged ACS integrity, as a marine-safe, easy-to-use MP-remediation tool, costing 30¢/tested device, or \$12 for a device that mimics a typical 625cm2 coral. In use, the ACS is simply lowered into MP-contaminated water, left until its MP load is reached, and then simply lifted out for MP recovery.

Real-Time Motion Tracking System and Data Analytics for Live Insects Using Three-Wheeled Servosphere Robot

Nicholas Lee

Hopkins School

New Haven, CT

ISEF Abstract:

Servosphere robots are used as omnidirectional treadmills for tetherless motion tracking, presenting improved accuracy to conventional methods while having numerous practical advantages. An area of interest for motion tracking is in machine learning, where a trained model can determine the traits of an insect, e.g., its species, sex, and health, based on its pathing. Last year's work developed a prototype servosphere tracking system, and this project extends that work with three contributions: 1) enhancing the system using a stronger, compacted design with error-reduced motors, a faster camera, and an optical sensor as well as more efficient multithreaded programming in Python, 2) performing stimulus experiments with seven live, naturally-obtained Laius niger and Monomorium minimum subjects, and 3) applying collected motion data to machine learning using a convolutional neural network (CNN) classification model. The experimental results demonstrate the effectiveness of the system in tracking live insect motion, having an average experimental error of 3.23mm along an ideal path. Five of the seven subjects are stimulated with 50g of sweetened honey and have a measured average speed of 11.594mm/s. The two control subjects have an average speed of 5.448mm/s, corroborating expected results and demonstrating the system's robustness with innate and stimulated motion. The developed CNN model aims to classify segmented trajectories based on their directions, such as left, right, or straight, and the systemproduced trajectories yield a model accuracy of 64%. In the future, the servosphere robot can be applied to other fields such as neuroscience with fluorescent neural behavior analysis.

The use of Prime Editing to Induce and Correct the CFTR-F508del mutation in iPSCs.

Benjamin Persily

King School

Stamford, CT

Awards: 3rd Place Grand Award in Cell and Molecular Biology (\$1,000)

ISEF Abstract:

According to the Cystic Fibrosis (CF) Foundation, over 70,000 people across the globe suffer from CF, and the life expectancy of patients with CF drops to about the age of 47. CF is an inherited condition that makes a patient's mucus thicker and stickier, which can lead to lung damage and infection. Approximately 70-90% of these cases are caused by a 3-bp deletion known as CFTR-F508del. Given the critical need for novel therapeutic interventions with greater efficacy, we aimed to model this mutation using prime editing and iPSCs to later differentiate and use these cells for studying CF. iPSCs serve as excellent models for disorders that affect different parts of the patient's body, due to their pluripotency. Prime editing serves as a powerful genetic editing alternative to the more traditional CRISPR/Cas9 method, as prime editing is safer and more reliable. Here, we report the successful reprogramming of fibroblasts into iPSCs and cloning of the pegRNAs required for prime editing. We then attempted to use prime editing to both induce and correct this mutation. The efficiency of the correction was higher than that of the induction; however, it was still very low. We are working to optimize the prime editing of the iPSCs via new and improved prime editing methods. Successful demonstration of prime editing in iPSCs holds great potential for not only studying CF in models, but for a wide range of genetic disorders in both research and clinical practice to help improve the lives of these patients.

Development of Readily Accessible Machine Learning Diagnostics for Early Stage Mild TBI using Eye Tracking Methods

Ashley Malkin

Greenwich High School

Greenwich, CT

Awards: 4th Place Grand Award in Translational and Medical Science (\$500)

ISEF Abstract:

1.5 million Americans suffer a traumatic brain injury every year. Without proper rest after even a mild concussion, repeated injuries to the brain build up and can lead to complications such as Chronic Traumatic Encephalopathy (CTE) later in life. Yet, especially in high school athletes, it is estimated that over 50% of concussions go undetected, as coaches/parents lack adequate training to make on-field diagnoses, and subsequent visits to medical professionals are often overlooked. A diagnostic device that can rapidly and easily diagnose concussions, on-site and in real-time, is needed. This research develops a portable, rapid eye tracking exam for concussion diagnosis, based on two eye-movement metrics, fixation time and pupil dilation. Each portion of the exam is based on a unique neural network written in Python with Tensorflow-based architecture, which identifies the subtle signs of a concussion that may be missed by human observers. Both models are trained on data from Wetzel, et. al., using fixation and pupil dilation datasets with 3058 and 1112 data points, respectively. The fixation model examines 11 metrics relating to eye fixation, saccades, and gaze velocity, while the pupil dilation model uses 4 metrics relating to pupil area. After training, the fixation model reached 93% accuracy and the pupil dilation model reached 80% accuracy, much higher than the 50% rate of existing concussion diagnostic methods. In use, an athlete who suffered a brain injury will take this new 2-minute eye tracking test, on the field-of-play, using a laptop/eye-tracker. A concussion diagnosis is given immediately after.

Development of a Home N-Terminal Pro-Brain Natriuretic Peptide Assay for the Diagnosis of Congestive Heart Failure

Maya Chiravuri

Choate Rosemary Hall

Wallingford, CT

Awards: 4th Place Grand Award in Translational and Medical Science (\$500)

Abstract:

Congestive heart failure (CHF) affects millions of patients and is associated with a high mortality rate. Early detection and treatment can improve outcomes and avoid hospitalization, but it is often difficult to tell if symptoms are specifically due to CHF or another cause. N. Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) is an excellent biomarker for CHF. The lateral flow assay (LFA) is a technology that can be adapted for use as a home test. The hypothesis is that an LFA can qualitatively detect NT-proBNP and ultimately be used to create a home CHF testing kit. A NTproBNP assay was created using a universal LFA kit with the appropriate capture and detection antibodies. Recombinant NT-proBNP was used to test the assay at varying concentrations. NT-proBNP was readily detectable using this system and the visual bands on the LFA strips were quantified using an optical densitometry protocol. After optimization of the reagents, NT-proBNP levels down to 5,000 pg/mL were detectable. This puts the test in the range of NT-proBNP levels that have been described for patients hospitalized with CHF. This test was repeated with purchased human serum spiked with recombinant NT-proBNP and showed detection at similar concentrations. Ultimately the goal is to create a simple visual test and so the LFA strips were shown to 20 blinded volunteers confirming detection of NT-proBNP at levels of 5,000 pg/mL and higher. These results show that a home NT-proBNP test is feasible and could be used for early detection and treatment of CHF

Implementing Nontoxic Modified Magnetic Metal Oxide Nanoparticle Enhanced Biochar Filtration for the Efficient Removal of Emerging Contaminants in an Aqueous Solution

Snigtha Mohanra

Engineering and Science Magnet

New Haven, CT

ISEF Abstract:

Many water sources contain emerging contaminants that currently lack sufficient regulation but lead to debilitating health and environmental effects, yet current standard water treatment processes cannot remove most such contaminants from water. This project researches the usage of doped biochar enhanced by the addition of metal oxide nanoparticles for removing specific emerging contaminants, namely pharmaceuticals, pesticides, microplastics, and oil, from water. Biomass content derived from either coconut shell or rice husk, both of which are abundant natural scrap materials, was individually pyrolyzed into biochar. Further, each biochar sample was separately tested with the enhancement of synthesized Fe304 and Mn02 nanoparticles. With biochar's advantageous absorption properties further enhanced by the increased surface area available for sequestration of contaminants through the addition of metal oxide nanoparticles, it was expected that an efficient contaminant removal method would be devised. Pharmaceutical and pesticide removals were measured using liquid chromatography mass spectrometry (LC-MS), microplastic removal was measured using digital WiFi light microscopy, and oil removal was measured using light spectrometry. Coconut shell biochar enhanced by the addition of Fe304 nanoparticles was the most effective design tested, removing 65.69% of acetaminophen and 50.09% of ibuprofen (pharmaceuticals), 61.05% of glyphosate (pesticide), 56.26 % of PETE microplastics, and approximately 71.83% of gasoline oil. This demonstrates considerably efficient removal through this inexpensive, environmentally-friendly, easily-implementable, and sustainable method. A prototype of a standard filter with compartments for sand and biochar filtration was developed using 3D modeling software and will be further refined for real-world Implementation.

Design of a Novel, Dual-Functioning Tissue Plasminogen Activator and Anticoagulant Therapeutic for Rapid Ischemic Stroke Treatment

Ambika Grover

Greenwich High School

Greenwich, CT

Awards: 1st Place Grand Award in Biomedical and Health Science (\$5,000) and (\$1,000 for both her school and CSEF)

ISEF Abstract:

Stroke is the second leading cause of death worldwide, with 15 million people suffering from its debilitating effects each year. 87% of strokes are ischemic, where an artery narrows or becomes wholly blocked due to a thrombus. Tissue Plasminogen Activator (PA) iS a protein that activates the conversion of plasminogen to plasmin, an enzyme responsible for the breakdown of clots. While tPA is the leading emergency treatment for ischemic stroke, it possesses several shortcomings, including a non-localized nature and increased risk of hemorrhage. Similarly, no existing therapeutic candidates have both dissolved the thrombus and simultaneously deterred the coagulation cascade, the process by which a thrombus is actively built. Herein, a rapid, clot-specific, and dual-functioning microbubble system, utilizing tPA and anticoagulant Dicumarol, was engineered to create a more effective emergency therapeutic. To begin, fabrication of the magnetic interior nanoparticles was completed by synthesizing Dicumarol-Carboxylic-acid coated Fe;O nanoparticles. Next,

Si02-tPA was fabricated, and added to complete the subsequent encapsulation layer of the nanoparticles. Finally, peptides CGSSSGRGDSPA and GRGD were conjugated to the nanoparticle's surface, to promote selectivity for platelets and fibrin, and ensure clotspecific adhesion and release. A vertical gel channel-system, composed of fibrinogen, thrombin, and agarose, was developed to validate clot dissolution function of the new therapeutic, which was 2x that of tPA alone. As a final verification component, in-vitro clots were created using

~100ul of whole-blood, in a 96-wellplate. Successful therapeutic-induced dissolution of thrombus was observed via increased absorbance throughout the visible spectral region, due to liquification of the clot.

Accompanying Team for Regeneron ISEF

Dr. Mathieu Freeman CSEF Board Member Research Director, Greens Farms Academy, Westport

Dr. Frank LaBanka CSEF Fair Director Principal, Westside Middle School Academy Magnet, Danbury

Catherine Piscitelli Research Director Amity Regional High School, Woodbridge

University of Connecticut Acaden	nic Excellence Scholarship	
Design of a Wearable, Skin-Specific UV	B Sensor for Instantaneous Detection of	Skin-Damaging
Radiation		
Yurika Sakai	Grade 11	Greenwich, CT
University of Hartford Scholarship	DS	
Creating a Frequency-Emitting Program	n to Enhance Mosquito Capture and Surv	eillance Efforts
in Response to the Spread of Mosquito	-Borne Diseases	
Daniel Liu	Grade 11	Woodbridge, CT
Award: Excellence in Science or Math (\$30,000)	
Assessing the Efficacy of Botanical Rep	ellents Against Blacklegged Ticks	
Ava Anderson	Grade 11	Ridgefield, CT
Award: Excellence in Science or Math	(\$30,000)	
Increasing Elasticity, Durability, and Fur	nction of Wearable PANI-sence pH Health	Monitors for
Superhydrophobic, Textile Framework		
Madeline Minichetti	Grade 11	Greenwich, CT
Award: Excellence in Engineering or Te	chnology (\$30,000)	
Remediation of Fire-Foam PFAs From (Filtration System	Contaminated water Using an Eco-Friend	ly and Reusable Water
Adam Kleshchelski	Grade 11	Cos-Cob, CT
Award: Excellence in Engineering or Te	chnology (\$30,000)	
University of New Haven Scholars	ships	
Biodegradation of Polystyrene by Bacte	ria Found in The Gut Tenebrio Molitar La	rvae
Tori Simmons	Grade 11	Norwich, CT
Sara Smith	Grade 11	New London, CT
Award: 4 Year Scholarship (\$96,000)	
Flexibility with Flying: Replicable of	and Attachable Aerial Robot with Mu	lti-Degree-
of-Freedom Siyi Lu	Grade 11	Kent, CT
Award: 4 Year Scholarship (\$96,000)		

A New Hybrid: Harnessing the Power of Frict	ion	
Michael Neiss	Grade 11	Guilford, CT
Award: 4 Year Scholarship (\$96,000)		
Quinnipiac University Scholarships		
Middle School:		
Wall-Climbing Soft Robot		
Thomas Gerlach	Grade 7	Ellington, CT
Award: 4 Year Scholarship (\$30,000)		
High School:		
JARVITS: A Novel Deep Learning loT Traffic	Control System for Real-Time Det	ection and
Signal Optimization		
Ryan Kim	Grade 11	New Haven, CT
Award: 4 Year Scholarship (\$30,000)		

Winning Projects of Regular Categories

A		CSF	- Life Scie	ences		CSF - Physical Sciences				
Awd	LT	L7	L8	LS	LST	PT	P7	P8	PS	PST
1	1007	2006	2515	3030	3515	4003	5011	5525	6082	6502
2	1012	2019	2509	3009	3507	4014	5007	5510	6054	6505
3	1005	2012	2504	3117	3522	4013	5009	5514	6042	6514
4		2010	2516	3038			5008	5505	6080	
5		2016	2503	3091			5005	5522	6071	
М	1003	2018	2517	3002	3509	4007		5508	6003	
М	1004			3020	3512	4009		5509	6021	
М	1016			3054	3519	4010			6027	
Μ				3068	3527				6028	
М				3078					6031	
М				3097					6039	
М				3101					6057	
M				3106					6058	
М				3110					6060	
М										
М										

Winning Projects of Special Categories

A	Ene	rgy	Petit For	indation	Envir S	Science		
Awd	Middle	High	Middle	High	Middle	High		
1	5508	6063	2509	3005	2019	3061		
2	5008	6013	5505	6003	5525	6039		
3	5506	6065	5509	6091	2509	6027		
М	5516	6001	1003	3002	4010	3002		
М		6504	2012	3008	4013	3007		
М			4002	3041	4014	3008		
М			5011	6011		3021		
М			5514	6081		3082		
М						3502		
Μ						3507		
М						3512		
Μ						6042		
М						6080		
Μ						6082		
М								

A	В	iotechnolo	gy	Urban S	chool			
Awd	7th	8th	9 - 12th	Middle	High			
1	1003	2515	3117	2006	3009			
2	2019	5514	3030	5514	3002			
3	2010	4010	3025	5009	6067			
4	1016	2512	3091	5505	6505			
5	2012	4013	3063	2010	3006			
М	1001	1002	3071	1005	3514			
М	1009	1014	3096	1017	6009			
Μ	2003	5504	3101	2001	6063			
Μ	2014	5510	3107	4006	6064			
М	2016	5515	6066	4013	6072			
М				5006				
М				5510				
М								
Μ								
М								

Winning Projects of Special Categories

And	Ene	ergy	Petit Fou	indation	Envir S	Science		
Awd	Middle	High	Middle	High	Middle	High		
1	5508	6063	2509	3005	2019	3061		
2	5008	6013	5505	6003	5525	6039		
3	5506	6065	5509	6091	2509	6027		
М	5516	6001	1003	3002	4010	3002		
М		6504	2012	3008	4013	3007		
Μ			4002	3041	4014	3008		
М			5011	6011		3021		
М			5514	6081		3082		
М						3502		
М						3507		
Μ						3512		
М						6042		
М						6080		
М						6082		
М								

A	Bi	iotechnolo	gy	Urban School				
Awd	7th	8th	9 - 12th	Middle	High			
1	1003	2515	3117	2006	3009			
2	2019	5514	3030	5514	3002			
3	2010	4010	3025	5009	6067			
4	1016	2512	3091	5505	6505			
5	2012	4013	3063	2010	3006			
М	1001	1002	3071	1005	3514			
М	1009	1014	3096	1017	6009			
Μ	2003	5504	3101	2001	6063			
М	2014	5510	3107	4006	6064			
М	2016	5515	6066	4013	6072			
Μ				5006				
М				5510				
Μ								
М								
М								

Winning Projects of Special Categories

Awd	Ene	ergy	Petit Fou	undation	Envir S	Science		
Awu	Middle	High	Middle	High	Middle	High		
1	5508	6063	2509	3005	2019	3061		
2	5008	6013	5505	6003	5525	6039		
3	5506	6065	5509	6091	2509	6027		
М	5516	6001	1003	3002	4010	3002		
М		6504	2012	3008	4013	3007		
М			4002	3041	4014	3008		
М			5011	6011		3021		
М			5514	6081		3082		
Μ						3502		
М						3507		
М						3512		
М						6042		
М						6080		
Μ						6082		
М								

A	B	iotechnolo	gy	Urban S	chool			
Awd	7th	8th	9 - 12th	Middle	High			
1	1003	2515	3117	2006	3009			
2	2019	5514	3030	5514	3002			
3	2010	4010	3025	5009	6067			
4	1016	2512	3091	5505	6505			
5	2012	4013	3063	2010	3006			
М	1001	1002	3071	1005	3514			
М	1009	1014	3096	1017	6009			
Μ	2003	5504	3101	2001	6063			
М	2014	5510	3107	4006	6064			
М	2016	5515	6066	4013	6072			
М				5006				
М				5510				
Μ								
М								
М								

UT	ГС	CSTA	CASE	Q	U		
Middle	High	Middle	High	Middle	High		
4003	6013	2515	3009	5007	6049		
4006	6032	5525	3030				
5505	6049		6082				
	6071						
	6505						

Student/Project Statistics

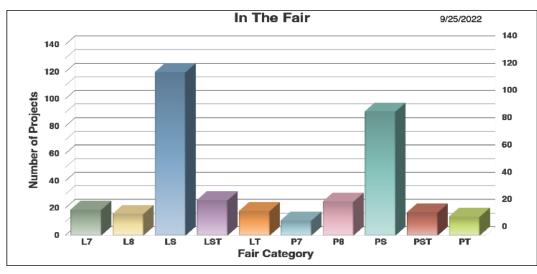
Projects

Project Category	JrTm	7th	8th	Sr	SrTm	Total	%
Life Sciences	16	16	13	102	25	172	56%
Physical Sciences	14	11	23	77	9	134	44%
Total	30	27	36	179	34	306	
Percent	10%	9%	12%	58%	11%	100%]
							-
Project Grade	7	8	9	10	11	12	Total
Life Sciences	23	22	14	16	56	41	172
Physical Sciences	14	33	5	14	30	37	133
Total	37	55	19	30	86	78	305
Percent	12%	18%	6%	10%	28%	25%	100%
Project Gender	7	8	9	10	11	12	Total
Male	16	26	7	12	45	35	141
Female	20	29	12	17	40	42	160
Not Given	1	0	0	1	1	1	4
Total	37	55	19	30	86	78	305

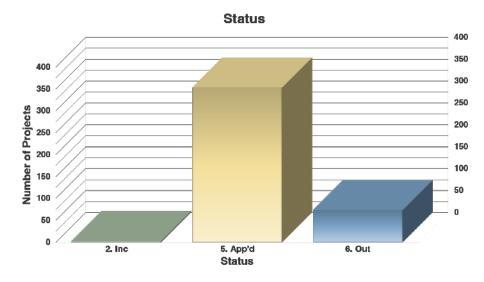
Students

Student Category	JrTm	7th	8th	Sr	SrTm	Total	%
Life Sciences	37	16	13	102	53	221	58%
Physical Sciences	31	11	23	77	20	162	42%
Total	68	27	36	179	73	383	
Percent	18%	7%	9%	47%	19%	100%	
							-
Student Grade	7	8	9	10	11	12	Total
Life Sciences	32	34	18	21	72	44	221
Physical Sciences	17	48	5	17	34	41	162
Total	49	82	23	38	106	85	383
Percent	13%	21%	6%	10%	28%	22%	100%
Student Gender	7	8	9	10	11	12	Total
Male	21	34	8	18	58	36	175
Female	26	47	14	19	46	48	200
Not Given	2	1	1	1	2	1	8
Total	49	82	23	38	106	85	383

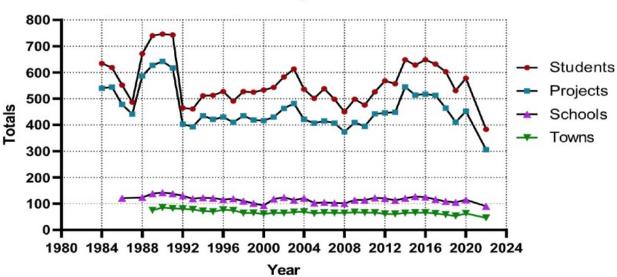
Summary


		Students		St	ident Gend	ler	Sch	ools	
Category	Jr	Sr	Total	Male	Fem	Total	Jr	Sr	
Life Sciences	66	155	221	83	132	221			
Physical Sciences	65	97	162	92	68	162			
Total	131	252	383	175	200	383			
Percent	34%	66%		46%	52%				
		Projects		Indi	vidual Proj	jects	Т	eam Projec	ts
Category	Jr	Sr	Total	Jr	Sr	Total	Jr	Sr	Total
Life Sciences	45	127	172	29	102	131	16	25	41
Physical Sciences	48	86	134	34	77	111	14	9	23
Total	93	213	306	63	179	242	30	34	64
Percent	30%	70%		26%	74%		47%	53%	

Awards


Projects>	Re	gular Awai	rds	Sp	ecial Awar	ds	All Awards			
Category	Jr	Sr	Total	Jr	Sr	Total	Jr	Sr	Total	
Life Sciences	28	39	67	19	28	47	32	50	82	
Physical Sciences	28	47	75	24	44	68	34	61	95	
Total	56	86	142	43	72	115	66	111	177	
Percent	39%	61%		37%	63%		37%	63%		

Honors


01013			Pro	jects			Stuc	lents	
Category	Hon	Jr	Sr	Total	%	Jr	Sr	Total	%
Life Sciences	1	18	21	39		26	29	55	
Physical Sciences		18	17	35		26	21	47	
Sub Total		36	38	74	24%	52	50	102	27%
Life Sciences	2	17	63	80		25	73	98	
Physical Sciences		16	42	58		21	45	66	
Sub Total		33	105	138	45%	46	118	164	43%
Life Sciences	3	10	43	53		15	53	68	
Physical Sciences		14	27	41		18	31	49	
Sub Total		24	70	94	31%	33	84	117	31%
Total				306				383	

2022 Fair

This graph shows the number of projects that were eventually entered into the fair as well as those that were not accepted based on SRC requirements, incomplete paperwork, or rules violations

CSEF Yearly Totals

Graph Note (see also pages 62-63)

1988 - Junior Individuals (LJ, PJ) were separated into L7, L8 and P7, P8 to reduce size of categories for judging prcess. 1991-Senior Teams (LST, PST) were added to the fair categories.

1992 - Maximum reservations for middle schools was changed from 6 to 3 projects per school.

1993 - Maximum reservations for middle schools was changed to 4 projects per school at request of teachers.

2014 - Maximum reservations for middle schools was changed to 6 projects and high schools to 15 projects.

2016 - Maximum reservations for middle schools was changed to 10 projects and high schools to 15 projects.

Historical Data on CSEF Fair Location and Project Information

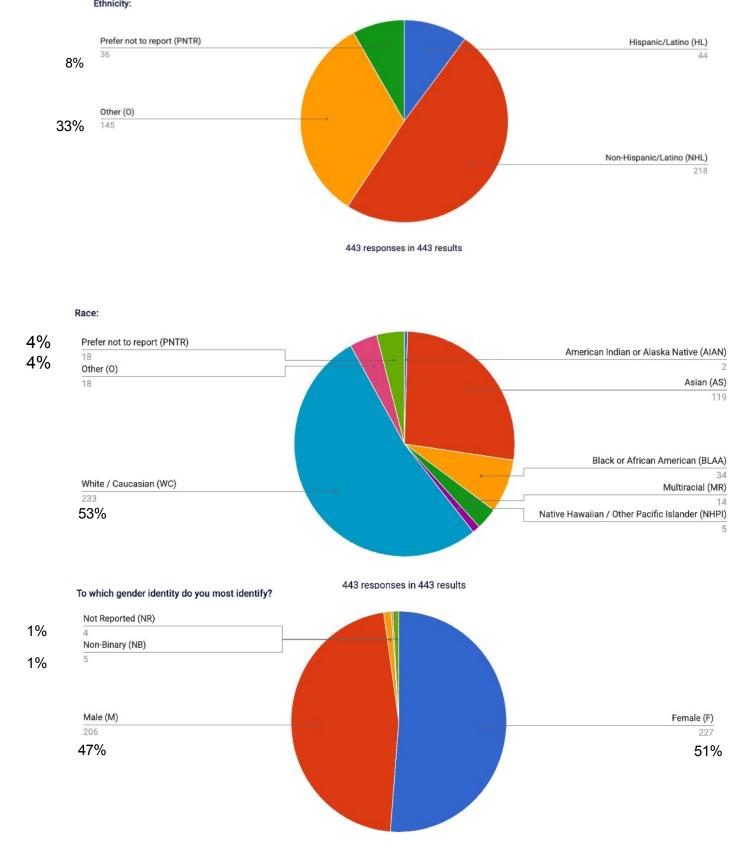
Year	Location	#Projects	#Students	#Towns	# Schools
1984	University of Connecticut, Stores	540	634	NA	NA
1985	Quinnipiac College, Hamden	544	619	NA	NA
1986	Quinnipiac College, Hamden	478	552	121	NA
1987	Connecticut College, New London	441	487	NA	NA
1988	Connecticut College, New London	587	671	124	NA
1989	Trinity College, Hartford	627	740	138	75
1990	Trinity College, Hartford	642	746	142	85
1991	Quinnipiac College, Hamden	617	743	138	82
1992	Quinnipiac College, Hamden	403	465	130	81
1993	U.S. Coast Guard Academy, New London	393	461	119	78
1994	U.S. Coast Guard Academy, New London	435	511	123	72
1995	University of Connecticut, Stores	421	513	121	70
1996	Connecticut College, New London	430	527	116	77
1997	Connecticut College, New London	410	491	119	75
1998	Quinnipiac College, Hamden	435	527	110	64
1999	Quinnipiac College, Hamden	419	525	102	65
2000	Quinnipiac College, Hamden	416	533	93	61
2001	Quinniaiac University, Hamden	430	543	118	65
2002	Quinniaiac University, Hamden	463	583	124	64
2003	Quinniaiac University, Hamden	482	613	114	68
2004	Quinniaiac University, Hamden	421	536	121	70
2005	Quinniaiac University, Hamden	407	501	103	63
2006	Quinniaiac University, Hamden	415	538	105	66
2007	Quinniaiac University, Hamden	407	498	103	65
2008	Quinniaiac University, Hamden	374	450	101	64
2009	Quinniaiac University, Hamden	409	498	114	68
2010	Quinniaiac University, Hamden	395	476	114	66
2011	Quinniaiac University, Hamden	442	526	122	66
2012	Quinniaiac University, Hamden	446	568	120	61
2013	Quinniaiac University, Hamden	448	557	113	61
2014	Quinniaiac University, Hamden	545	648	121	64
2015	Quinniaiac University, Hamden	514	628	127	66
2016	Quinniaiac University, Hamden	517	648	125	66
2017	Quinniaiac University, Hamden	513	632	116	63
2018	Quinniaiac University, Hamden	464	603	109	58
2019	Quinniaiac University, Hamden	411	578	103	53
2020	Virtual Fair	452	578	115	63
2021	Virtual Fair	NA	NA	NA	NA
2022	Virtual Fair	306	383	90	46

Project Category Te	otals by Y	lear									
Year	LT	L7	LJ L8	LS	LST	РТ	P7	PJ P8	PS	PST	Total
1984	58	-	137 -	74		36		162 -	73		540
1985	41	-	155 -	68		34		175 -	71		544
1986	36	-	125 -	60		38		152 -	67		478
1987	26	-	136 -	63		20		<u>157</u> -	39		441
1988	37	70	89	47		47	94	144	59		587
1989	56	76	93	64		57	91	121	69		627
1990	63	105	89	83		41	78	102	81		642
1991	56	80	87	75	6	56	67	110	74	6	617
1992	32	35	60	79	7	23	45	60	62	Ő	403
1993	37	53	58	47	4	23	45	74	49	3	393
1994	31	40	70	64	14	25	49	88	51	3	435
1995	34	46	57	60	11	37	53	68	50	5	421
1996	40	42	64	53	14	37	44	76	54	6	430
1997	35	51	49	60	11	32	41	80	49	2	410
1998	35	58	61	56	15	30	58	54	58	10	435
1999	40	46	39	63	18	39	49	63	58	4	419
2000	46	46	44	62	11	43	42	59	50	13	416
2001	36	47	56	78	7	54	38	56	45	13	430
2002	43	44	63	74	27	36	47	59	58	12	463
2003	39	54	57	59	32	42	44	78	64	13	482
2004	32	40	44	67	16	42	38	65	58	19	421
2005	21	35	48	54	24	35	51	72	56	11	407
2006	22	25	46	48	29	33	47	76	63	26	415
2007	20	38	28	66	16	38	48	65	76	12	407
2008	19	38	46	59	29	14	47	51	61	10	374
2009	24	40	35	83	18	27	53	44	69	16	409
2010	19	30	36	75	16	23	52	61	65	18	395
2011	22	31	42	85	11	25	60	62	86	18	442
2012	27	34	43	92	20	34	44	54	74	24	446
2013	20	31	38	89	14	44	53	58	86	15	448
2014	17	45	43	144	17	29	55	65	109	21	545
2015	25	41	43	118	25	31	62	64	91	14	514
2016	32	63	53	105	22	38	39	68	71	26	517
2017	17	34	37	132	36	27	38	71	97	24	513
2018	15	30	35	101	44	28	38	54	92	27	464
2022	16	16	13	102	25	14	11	23	77	9	385

School and Town/City Statistics

Town	School		Reserved	1		In F	air		Туре	Path	UC
Project Type = 1=1	Middle School; 2 = High or Middle School	MS	HS	Total	Project	Students	MS	HS			
Ansonia	Assumption School	2	0	2	**	**	**	**	1		
Ansonia	Emmett O'Brien Technical	0	3	3	**	**	**	**	2		
Avon	Avon Old Farms School	0	1	1	2	2	0	2	2		
Avon	Farmington Valley	3	0	3	3	3	3	0	1		
Avon	Talcott Mountain	6	0	6	6	6	6	0	1		
Bethel	Bethel High School	0	2	2	1	1	0	1	2		
Bozrah	Fields Memorial School	4	0	4	2	3	2	0	1		
Bridgeport	Bridgeport BOE	10	15	25	**	**	**	**	2	bp	x
Bridgeport	Bridgeport Regional	0	10	10	**	**	**	**	2	bp	х
Bridgeport	Bullard-Havens Technical	0	3	3	**	**	**	**	2	bp	x
Bridgeport	Park City Prep Charter	10	0	10	**	**	**	**	1	bp	x
Cheshire	Cheshire High School	0	7	7	5	5	0	5	2		
Cheshire	Dodd Middle School	1	0	1	1	1	1	0	1		
Cheshire	St. Bridget School	2	0	2	2	2	2	0	1		
Clinton	THE MORGAN SCHOOL	0	3	3	3	3	0	3	2		
Danbury	Danbury High School	0	1	1	1	1	0	1	2		x
Danbury	Henry Abbott Technical	0	3	3	1	1	0	1	2	GS	
Danburv	St. Gregory the Great	8	0	8	8	11	8	0	1		
Danbury	Westside Middle School	10	0	10	9	11	9	0	1		x
Danielson	H.H. Ellis Technical High	0	3	3	**	**	**	**	2	GS	

Town	School		Reserved	l		Inl	Fair		Туре	Path	UC
Project Type = 1= N	Middle School; 2 = High or Middle School	MS	HS	Total	Project	Students	MS	HS			
Darien	Darien High School	0	10	10	7	7	0	7	2		
East Lyme	East Lyme High School	0	6	6	3	5	0	3	2		
Ellington	Ellington High School	0	0	0	**	**	**	**	2		
Ellington	Ellington Middle School	1	0	1	1	1	1	0	1		
Enfield	Chiaravalle Academy	8	0	8	8	19	8	0	1		
Fairfield	Fairfield College	0	4	4	1	1	0	1	2		
Farmington	Miss Porter's School	0	1	1	1	1	0	1	1		
Fishers Island	Fishers Island School	0	1	1	1	1	0	1	1		
Glastonbury	Glastonbury Public	0	15	15	7	7	0	7	2	GP	
Greenwich	Brunswick School	0	15	15	13	23	0	13	2		
Greenwich	Central Middle School	2	0	2	**	**	**	**	1		
Greenwich	Eastern Middle School	2	0	2	**	**	**	**	1		
Greenwich	Greenwich Academy	0	2	2	2	2	0	2	2		
Greenwich	Greenwich Catholic	4	0	4	4	6	4	0	1		
Greenwich	Greenwich Country Day	0	7	7	6				2		
Greenwich	Greenwich High School	0	15	15	18	18	0	18	2		
Greenwich	Sacred Heart Greenwich	0	15	15	7	10	0	7	2		
Greenwich	Western Middle School	2	0	2	**	**	**	**	1		
Groton	Ella T. Grasso Technical	0	3	3	**	**	**	**	1	GS	


Town	School		Reserved	1		In F	air		Туре	Path	UC
Project Type = 1=1	Middle School; 2 = High or Middle School	MS	HS	Total	Project	Students	MS	HS			
Guilford	Guilford High School	0	3	3	3	3	0	3	2		
Hamden	Eli Whitney Technical	0	3	3	**	**	**	**	2		
Hamden	Hamden Hall Country Day	4	8	12	9	10	4	5	2		
Hamden	Sacred Heart Academy	0	10	10	8	9	0	8	2		
Hartford	A.I. Prince Technical High	0	0	0	**	**	**	**	2	GS	
Hartford	Environmental Sciences Magnet School	3	0	3	1	1	1	0	1		x
Hartford	Renzulli Academy	4	0	4	4	5	4	0	1		x
Hartford	Watkinson School	0	0	0	**	**	**	**	2		
Kensington	St. Paul School	6	0	6	1	1	1	0	1		
Kent	Kent School	0	4	4	3	3	0	3	2		
Manchester	Howell Cheney Technical High School	0	3	3	**	**	**	**	2		
Manchester	Manchester High School	0	7	7	5	5	0	5	2		x
Manchester	Saint James School	3	0	3	1	1	1	0	1		
Meriden	H.C. Wilcox Technical High School	0	3	3	**	**	**	**	2		
Middlebury	Westover School	0	1	1	1	1	0	1	2		
Middletown	/ Vinal Technical High School	0	3	3	**	**	**	**	2		x
Milford	Platt Technical High School	0	3	3	1	3	0	1	2	GS	
New Britain	E.C. Goodwin Technical High School	0	3	3	**	**	**	**	2	GS	
New Canaan	St. Aloysius School	4	0	4	2	2	2	0	1		
New Haven	Hopkins School	0	1	1	2	2	1	1	2		

Town	School		Reserved	1		In F	In Fair		Type	Path	UC
Project Type = 1= Middle School; 2 = High or Middle School		MS	HS Total	Total	Project	Students	MS	HS			
New Haven	Sound School	0	4	4	3	3	0	3	2		
New Haven	Worthington Hooker Middle School	0	0	0	**	**	**	**	1		x
New London	New London Public Schools	0	10	10	**	**	**	**	2		x
New Milford	Canterbury School	0	3	3	1	1	0	1	2		
Norwich	Norwich Technical High School	0	8	8	5	10	0	5	2	GS	
Pawcatuck.	St. Michael School	6	0	6	4	4	4	0	1		
Pomfret	Pomfret School	0	2	2	2	2	0	2	2		
Putnam	Putnam Science Academy	0	1	1	**	**	**	**	2		
Redding	CT STEM Foundation	0	7	7	4	4	0	4	2	CS	
Redding	Joel Barlow High School	0	1	1	**	**	**	**	2		
Ridgefield	Ridgefield High School	0	15	15	6	6	0	6	2		
Rocky Hill	Rocky Hill High School	0	3	3	**	**	**	**	2		
Salisbury	Salisbury School	0	1	1	**	**	**	**	2		
Sandy Hook	Newtown High School	0	10	10	6	6	0	6	2		
Shelton	Shelton Intermediate School	3	0	3	3	5	3	0	1		
Simsbury	Simsbury High School	0	1	1	1	1	0	1	2		
South Kent	South Kent School	0	15	15	**	**	**	**	2		
South Windsor	South Windsor High School	0	1	1	1	1	0	1	2		
Stamford	Bi-Cultural Hebrew Academy	3	0	3	3	4	4	0	1		
Stamford	J.M. Wright Technical High School	0	3	3	**	**	**	**	2		

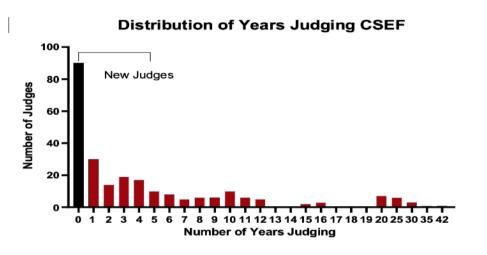
Town	School		Reserved			In F	air		Type	Path	UC
Project Type = 1= Middle School; 2 = High or Middle School		MS	HS Total	Project	Students	MS	HS				
Stamford	King School	0	9	9	8	8	0	8	2		
Stamford	Stamford High School	0	1	1	**	**	**	**	2		
Storrs	E.O. Smith High School	0	3	3	3	7	0	3	2		
Suffield	Suffield Academy	0	2	2	1	1	0	1	2		
Suffield	Suffield High School	1	12	13	4	4	0	4	2		
Suffield	Suffield Middle School				1	1	1	0	1		
Torrington	Oliver Wolcott Technical High School	0	3	3	**	**	**	**	2		
Trumbull	Christian Heritage School	3	3	6	6	6	3	3	2		
Wallingford	Choate Rosemary Hall	0	6	6	7	7	0	7	2		
Waterbury	ACES at Chase	10	0	10	5	12	5	0	1		
Waterbury	W.F. Kaynor Technical High School	0	3	3	**	**	**	**	2		
Watertown	The Taft School	0	1	1	**	**	**	**	2		
West Hartford	Mileva Maric Montessori	0	0	0	**	**	**	**	1		
West Haven	Engineering and Science University Magnet	6	8	14	**	**	**	**	2		
West Haven	Notre Dame High School	0	10	10	**	**	**	**	2		
Westport	Greens Farms Academy	0	8	8	4	4	0	4	2		
Westport	Staples High School	0	10	10	4	4	0	4	2		
Wilton	Wilton Middlebrook school	7	0	7	5	8	5	0	1		
Windham	Windham Technical High School	0	3	3	**	**	**	**	2		
Windsor	Academy of Aerospace and Engineering	0	15	15	6	11	0	6	2		х
Windsor	Madina Academy	2	2	4	3	4	1	2	2		
Windsor	The Loomis Chaffee School	0	7	7	6	6	0	6	2		
Woodbridge	Amity Regional High School	0	15	15	15	16	0	15	2		

Returning Students Presenting at CSEF

5 Year Students (2)	School	Town	Grade	Honors
David Boudreau	Fairfield Collage Prep.	Ansonia	11	3
Jack Shanks	Suffield High school	Suffield	12	3
4 Year Students (4)				
Alman-Imran Anuar	Engineering and Science University Magnet	New Haven	11	*
Siddant Bhardwaj	Cheshire	Cheschire	11	2
Mehr Chhatre	Sacred Heart Academy	Hamden	12	1
Avie Vasantlal	Suffield High School	Suffield	12	*
3 Year Students (7)				
Hassan Aljafar	Suffield High School	Suffield	12	2
Abby Barnett	Sacred Heart Greenwich	Darien	12	2
Ruby Hoffman-Blustajn	Sound School	Hamden	11	2
Sean Lee	Loomis Chaffe School	Los Altos	12	1
Jason Li	Guilford High School	Guilford	10	3
Annie O'Connor	Sacred Heart Greenwich	Rye	12	2
Gabriella Spata	Sound School	New Haven	11	2

443 responses in 443 results

Summary of Judging Statistics


Judges' Affiliation	<u>#</u> Judge
AIAA	<u>s</u>
Alexion	18
Am. Society Safety Professionals (ASSP)	3
NESS1	-
Astronomical Society of Greater Hartford	3
Avangrid	4
Banning Family Invasive Species Award	1
Boehringer Ingelheim	15
Bristol Myers Squibb retired	3
CACIWC	1
Capitol Region Education Council	1
Collins Aerospace	2
Conn. Science and Engineering Fair	6
Connecticut Academy of Audiology	2
Connecticut Childrens Medical Center	3
Connecticut College	2
Connecticut Science Center	2
Connecticut Technology Council	1
Connecticut TSA	1
CT Academy of Science & amp; Engineering	1
CT-Section IEEE	3
Earth Forward Group	2
General Dynamics - Electric Boat	3

Judges' Affiliation Cont.	# Judges
Ensign-Bickford Aerospace & amp; Defense	1
Eversource Energy	5
Flightware	1
Goodrich - Retired	1
Goodwin University	
Southern Conn. State University	1
Hartford HealthCare	1
IBM	1
IFTSA	1
Jackson Laboratory	11
John Morgan Architects	1
Johnson & amp; Wales University	1
Meta	1
Nalas Engineering Services	1
Navy Dept. NUWC-NPT	3
New Haven Environmental Council	1
Nutmeg IFT	1
Otis Elevator Company	1
Penn State College of Medicine	1
Pfizer, Inc.	13
Pratt & Whitney	3
Project Oceanology	1
Quinnipiac University	6
Raytheon1	
Southeastern New England Marine Educator	3
Sikorsky Aircraft	4
Talcott Mountain Science Center	5
The Norwich Free Academy	1
Travelers	2

1

	_	
University of Connecticut	6	
UConn Health	1	
Unilever	1	
United Technologies (retired)	3	
University of Hartford	4	
University of New Haven	1	
Vanderbilt Chemicals LLC	1	
Western Connecticut State University	2	
Westinghouse	2	
Wisner Memorial Award	1	
Wooster School	1	
Yale University7		
Yale New Haven Health	1	Total Judges =257
Unaffiliated (no affiliation in registration)	73	
Unaffiliated can include judges which fail affiliation	led to note their	
Judges' Affiliation Cont. # Judge	9	

Judges by Registration	<u>n Category</u>	<u>#</u> Judge s
Alternative/Renewable Energ	8y	5
Alumni & amp; Friends Award	S	9
Applied Technology		2
Biotechnology		29
Computational Sciences and	Bioinformatics	4
Computer Science		7
Engineering		21
Environmental		9
Future Sustainability		8
Life Sciences		48
Mathematics		8
Physical Sciences		20
Quinnipiac U. Scholarships		2
Raytheon Awards		5
Special Awards - Connecticut		38
Special Awards - National		13
Technical High Schools		2
Urban School Challenge		14
Zoom Meeting Moderator for	Virtual Judging	5
	Total Registered Judges	249

This graph shows the total number of judges broken out by the experience they have judging CS

Next year's 75th CSEF will be a hybrid fair with both virtual presentation and judging for all students on March 6-18th with finalist judging at Quinnipiac University in Hamden, CT